Diofanto de Alejandría

diofantoHoy traemos a nuestra sección de matemáticos ilustres a Diofanto de Alejandría, un antiguo matemático griego que es considerado por muchos el padre del álgebra.

No se conoce demasiado sobre su vida, y de hecho los historiadores no terminan de ponerse de acuerdo respecto a la fecha en la que vivió, aunque todo parece indicar que fue en los siglos III o IV d.C.

Según la leyenda uno de sus alumnos escribió en su tumba un epitafio que ha perdurado hasta nuestros días y que se ha convertido en un problema típico de matemáticas y que es perfectamente asequible para alumnos del primer ciclo de Educación Secundaria.

“Caminante, esta es la tumba de Diofanto: es él quien con esta sorprendente distribución te dice el número de años que vivió. Su niñez ocupó la sexta parte de su vida; después, durante la doceava parte su mejilla se cubrió con el primer bozo. Pasó aún una séptima parte de su vida antes de tomar esposa y, cinco años después, tuvo un precioso niño que, una vez alcanzada la mitad de la edad de su padre, pereció de una muerte desgraciada. Su padre tuvo que sobrevivirle, llorándole, durante cuatro años. De todo esto se deduce su edad.”

Este matemático alejandrino debe su renombre a su obra Arithmetica. Este libro, que constaba de trece libros de los que sólo se han hallado seis, fue publicado por Guilielmus Xylander en 1575 a partir de unos manuscritos de la universidad de Wittenberg, añadiendo el editor un manuscrito sobre números poligonales, fragmento de otro tratado del mismo autor. Los libros que faltan parece que se perdieron tempranamente ya que no hay razones para suponer que los traductores y comentaristas árabes dispusieran de otros manuscritos además de los que aún se conservan.

En esta obra realiza sus estudios de ecuaciones con variables que tienen un valor racional (ecuaciones diofánticas), aunque no es una obra de carácter teórico sino una colección de problemas. Importante fue también su contribución en el campo de la notación; si bien los símbolos empleados por Diofanto no son como los concebimos actualmente, introdujo importantes novedades como el empleo de un símbolo único para la variable desconocida

Nota: Este blog participa por primera vez  con esta entrada en el  Carnaval de Matemáticas que este mes llega a su edición 4.12310  y cuyo blog anfitrión es Geometría Dinámica.

Anuncios

El número de Ramanujan

200px-Srinivasa_Ramanujan_-_OPC_-_2Srinivasa Ramanujan (1887-1920) está considerado por muchos como uno de los mayores genios de la historia de las matemáticas. Nació en la India en el seno de una familia muy pobre. Su formación matemática la obtuvo de dos libros un tratado de trigonometría y otro que recogía unos 6.000 teoremas sin más explicación.

En el año 1912 escribió a varios matemáticos, entre ellos G.H. Hardy, considerado el matemático británico más importante de esa época, que asombrado por la genialidad de Ramanujan le hizo ir a Inglaterra.

Lo principal de los trabajos de Ramanujan está en sus cuadernos, escritos por él en nomenclatura y notación particular, con ausencia de demostraciones, lo que ha provocado una difícil tarea de desciframiento y reconstrucción, aún no concluida. Fascinado por el número pi, desarrolló potentes algoritmos para calcularlo.

Se denomina número de Hardy-Ramanujan a todo entero natural que se puede expresar como la suma de dos cubos de dos maneras diferentes. Hardy comenta la siguiente anécdota :

Recuerdo que fui a verle una vez, cuando él ya estaba muy enfermo, en Putney. Había tomado yo un taxi que llevaba el número 1729 y señalé que tal número me parecía poco interesante, y yo esperaba que él no hiciera sino un signo desdeñoso.
– “No”- me respondió- este es un número muy interesante; es el número más pequeño que podemos descomponer de dos maneras diferentes como suma de dos cubos.

Efectivamente, 1729 = 10³+9³ y 12³ + 1³